
ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6626

A Comparative Analysis of Three Different

Types of Searching Algorithms in Data Structure

Debadrita Roy
1
, Arnab Kundu

2

Trainer, Ghani Khan Chowdhury Institute of Engineering & Technology, Malda, West Bengal1

Assistant Professor, Birbhum Institute of Engineering & Technology, Suri, Birbhum, West Bengal2

Abstract: Searching is a process of checking and finding an element from a list of elements. Although there are huge

numbers of searching algorithms are available. But here our work intends to show an overview of comparison between

three different types of searching algorithms. We have tried to cover some technical aspects of Linear or Sequential

search, Binary Search and Interpolation Search. This research provides a detailed study of how all the three algorithms

work & give their performance analysis with respect to time complexity.

Keywords: Complexity, Linear Search, Binary Search, Interpolation search, time complexity

I. INTRODUCTION

In the present scenario an algorithm and data structure

play a significant role for the implementation and design

of any software [1]. An algorithm is a finite sequential set

of instructions which, if followed, accomplish a particular

task or a set of tasks in a finite time.

Complexity: The complexity of an algorithm is a function

g(n) that gives the upper bound of the number of

operations performed by an algorithm when the input size

is n. Complexity are divided in two ways. Time complexity

is the amount of time the computer requires to execute the

algorithm& Space complexity of an algorithm is the

amount of memory space the computer requires,

completing the execution of the algorithm. In case of

algorithm searching is the process to finding to location of

the given data elements in the data structure. The different

types of searching techniques are Linear search, Binary

search.

Linear (Sequential) Search is the basic and simple method

of searching: It is a method where the search begins at the

end of the list, scans the elements of the list from left to

right until the desired record is found.

In Binary search the entire sorted list is divided into two

parts. We first compare our input item with the mid

element of the list & then restrict our attention to only the

first or second half of the list depending on whether the
input item comes left or right of the mid element. In this

way we reduce the length of the list to be searched by half.

Less time is taken by binary search to search an element

from the sorted list of elements .So we can conclude that

binary search method is more efficient than the linear

search. Binary search algorithm is efficient because it is

based on divide-and-conquer strategy; which divides the

list into two parts and searches one part of the list thereby

reducing the search time [2].

Interpolation Search (sometimes referred to

as extrapolation search) is an algorithm for searching for a

given key value in an indexed array that has

been ordered by the values of the key. In this paper,

mainly we have reviewed three searching algorithms .The

concept of three searching techniques with examples,

algorithm of each searching process, time complexity have

discussed here. Finally, conclusions were presented in

section 5.

II. CONCEPT BEHIND SEARCHING

PROCESS

In linear search, each element of an array is read one by

one sequentially and it is compared with the desired

element. A search will be unsuccessful if all the elements
are read and the desired element is not found. Where

Binary search is an extremely efficient algorithm when it

is compared to linear search. Binary search technique

searches ―data‖ in minimum possible comparisons.

Suppose the given array is a sorted one, otherwise first we

have to sort the array elements. Then apply the following

conditions to search a ―data‖.

1) Find the middle element of the array (i.e., n/ 2 is the

middle element if the array or the sub-array contains n

elements).

2) Compare the middle element with the data to be
searched and then there are following three cases.

a) If it is a desired element, then search is successful.

b) If it is less than desired data, then search only the first

half of the array, i.e., the elements which come to the

left side of the middle element.

c) If it is greater than the desired data, then search only

the second half of the array, i.e., the elements which

come to the right side of the middle element.

Repeat the same steps until an element are found or
exhaust the search area. Again For searching an ordered

array, Interpolation search is used. This method is even

more efficient than binary search, if the elements are

uniformly distributed (or sorted) in an array A.

Interpolation search is a method of retrieving a desired

record by key in an ordered file by using the value of the

key and the statistical distribution of the Keys [3].

Consider an array A of n elements and the elements are

uniformly distributed (or the elements are arranged in a

sorted array). Initially, as in binary search, low is set to 0

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6627

and high is set to n – 1. Now we are searching an element

key in an array between A[low] and A[high].

The key would be expected to be at mid, which is an

approximately position. mid = low + (high – low) × ((key

– A[low])/ (A[high] – A[low])). If key is lower than

A[mid], reset high to mid–1; else reset low to mid+1.

Repeat the process until the key has found or low > high.

III. PROCEDURE OF SEARCHING

A. Linear or Sequential Search :

Unsorted array

 5 4 21 16 25 3 15

 5 4 21 16 25 3 15
 5 4 21 16 25 3 15

 5 4 21 16 25 3 15

 5 4 21 16 25 3 15

 5 4 21 16 25 3 15

 5 4 21 16 25 3 15

Conclusion: The element 15 is not present inside that

array.

Sorted array

4 5 9 11 13 10

4 5 9 11 13 10

4 5 9 11 13 10

4 5 9 11 13 10

4 5 9 11 13 10

Conclusion: The element 10 is not present inside that

B. Binary Search :

Suppose we have an array of 7 elements

Following steps are generated if we binary search a data =

45 from the above array.

Step 1:

LB = 0;

UB = 6 ;

mid = (0 + 6)/ 2 = 3

A[mid] = A[3] = 30

Step 2:

Since (A[3] < data) - i.e., 30 < 45 – reinitialise

the variable LB, UB and mid

LB = 3;

UB = 6;

mid = (3 + 6)/ 2 = 4

 A[mid] = A [4] = 40

Step 3:

Since (A [4] < data) - i.e., 40 < 45 - reinitialise

the variable LB, UB and mid

LB = 4;
UB = 6;

mid = (4 + 6)/ 2 = 5

A[mid] = A [5] = 45

Step 4:

Since (A [5] == data) - i.e., 45 == 45 - searching

is successful.

C. Interpolation Search :

Consider 7 numbers.

2, 25, 35, 39, 40, 47, 50

Step1:

Suppose we are searching 50 from the array.

Here n = 7

Key = 50

low = 0

high = n – 1 = 6

mid = 0+(6–0) × ((50–2)/ (50–2))
= 6 × (48/ 48)

= 6 if (key == A[mid]) ⇒ key == A [6]

⇒ 50 == 50 ⇒ key is found.

Step 2:
Say we are searching 25 from the array

Here n = 7

Key = 25

low = 0

high = n – 1 = 6

mid = 0 + (6–0) × ((25–2)/ (50–2))

= 6 × (23/ 48)

= 2.875

Here we consider only the integer part of the midi.e.,

mid = 2 if (key == A[mid]) ⇒ key == A[2]⇒ 25 == 25 ⇒

key is found.

Step 3:
Say we are searching 34 from the array

Here n = 7

Key = 34

low = 0

high = n – 1 = 6

mid = 0 + (6 – 0) × ((34 – 2)/ (50– 2))

= 6 × (32/ 48)

= 4

if(key < A[mid]) ⇒ key < A[4] ⇒ 34 < 40 so reset

high = mid–1⇒ 3

low = 0

high = 3

Since(low < high)
mid = 0+(3–0) × ((34–2)/ (39–2))

= 3 × (32/ 37)

= 2.59

Here we consider only the integer part of the midi.e.,

mid = 2

if (key < A[mid])

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6628

⇒key< A[2] ⇒ 34 < 35 so reset

high = mid–1 ⇒ 1

low = 0

high = 1

Since (low < high)

mid = 0+(1–0) × ((34–2)/ (25–2))
= 3 × (32/ 23)

= 1 here (key > A[mid])

⇒key> A[1] ⇒ 34 > 25

so reset low = mid+1

⇒ 2

low = 2

high = 1

Since (low > high)

So― The key is not in the array‖

IV. ALGORITHM

A. Linear or Sequential Search :
Let A be an array of n elements, A[1],A[2],A[3],

A[n]. ―data‖ is the element to be searched. Then this

algorithm will find the location ―loc‖ of data in A. Set loc

= – 1,if the search is unsuccessful.

1. Input an array A of n elements and ―data‖ to be

searched and initialise loc = – 1.

2. Initialise i = 0; and repeat through step 3 if (i<n) by

incrementing i by one .
3. If (data = A[i]) (a) loc = i

4. (b) GOTO step 4

5. If (loc> 0)

a. Display ―data is found and searching is successful‖

6. Else

a. Display ―data is not found and searching is

unsuccessful‖

7. Exit

B. Binary Search :

Let A be an array of n elements A [1], A [2], A

[3],......A[n]. ―Data‖ is an element to be searched. ―mid‖
denotes the middle location of a segment (or array or sub-

array) of the element of A. LB and UB is the lower and

upper bound of the array which is under consideration.

1. Input an array A of n elements and ―data‖ to be sorted

2. LB = 0, UB = n; mid = int ((LB+UB)/ 2)

3. Repeat step 4 and 5 while (LB <= UB) and (A[mid]!
= data)

4. If (data < A[mid]) UB = mid–1

5. Else LB = mid + 1

6. Mid = int ((LB + UB)/ 2)

7. If (A[mid] == data) Display ―the data found‖

8. Else Display ―the data is not found‖

9. Exit

C. Interpolation Search :

Suppose A be array of sorted elements and key is the

elements to be searched and low represents the lower

bound of the array and high represents higher bound of the
array.

1) Input a sorted array of n elements and the key to

be searched

2) Initialise low = 0 and high = n – 1

3) Repeat the steps 4 through 7 until if(low < high)

4) Mid = low + (high – low) × ((key – A[low]) /

(A[high] – A[low]))
5) If(key < A[mid])

high = mid–1

6) Elseif (key > A[mid]) low = mid + 1

7) ElseDisplay ― The key is not in the array‖

8) STOP

V. OBSERVATIONS

A. Linear or Sequential Search :

Time Complexity of the linear search is found by number
of comparisons made in searching a record.

Suppose there are n elements in the list. The following

expression, gives average number of comparisons

„ 1+2+ …..+n / n

„ 1+2+ …..+n = n(n+1)/2

„ Thus the following expression gives the average number

of comparisons made by sequential search in successful

case :

1+2+……+n=1n(n+1) = n+1

 n 2 2

In the best case, the desired element is present in the first

position of the array, i.e., only one comparison is made. So

f (n) = O(1). In the Average case, the desired element is

found in the half position of the array, then f (n) = O[(n +

1)/ 2]. But in the worst case the desired element is present
in the nth (or last) position of the array, so n comparisons

are made. So f (n) = O(n + 1)

B. Binary Search :

Time Complexity is measured by the number f (n) of

comparisons to locate ―data‖ in A, which contain n

elements. Each step of the algorithm divides the block of

items being searched in half. We can divide a set

of n items in half at most log2 n times. Thus the running

time of a binary search is proportional to log n and we say
this is a O(log n) algorithm. Observe that in each

comparison the size of the search area is reduced by half.

Hence in the worst case, at most log2n comparisons

required. So f (n) = O([log2n]+1). Time Complexity in the

average case is almost approximately equal to the running

time of the worst case. Binary search requires a more

complex program than our original search and thus

for small n it may run slower than the simple linear search.

However, for large n,

Fig. 1. : Pictorial representation of Binary Search

Technique

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6629

limlog /
n

n n


At large n, log n is much smaller than n, consequently

an O(log n) algorithm is much faster than an O(n) one.

Fig. 2. : Plot of n and log n v/s n

C. Interpolation Search :

On average the interpolation search makes about

log(log(n)) comparisons(if the elements are uniformly

distributed), where n is the number of elements to be

searched. In the worst case (for instance where the

numerical values of the keys increase exponentially) it can

make up to O(n) comparisons.

Using big-O notation, the performance of the interpolation

algorithm on a data set of size N is O(N); however under

the assumption of a uniform distribution of the data on the

linear scale used for interpolation, the performance can be

shown to be O(log log N).

The expected running time of interpolation search on

random files (generated according to the uniform

distribution) of size n is 0(log log n). This was shown by

Yao and Yao [4], Pearl et al. [5]. A very intuitive
explanation of the behaviour of interpolation search can be

found in Pearl and Reingold [6].

VI. CODES

A. Linear or Sequential Search :

#include <stdio.h>

 int main()

{

int array[100], search, c, n;

printf("Enter the number of elements in array\n");

scanf("%d",&n);
printf("Enter %d integer(s)\n", n);

for (c = 0; c < n; c++)

scanf("%d", &array[c]);

 printf("Enter the number to search\n");

scanf("%d", &search);

for (c = 0; c < n; c++)

 {

if (array[c] == search) /* if required element found */

 {

printf("%d is present at location %d.\n", search, c+1);

break;

 }
 }

if (c == n)

printf("%d is not present in array.\n", search);

 return 0;

}

B. Binary Search :

#include <stdio.h>

int main()

{

int c, first, last, middle, n, search, array[100];

printf("Enter number of elements\n");

scanf("%d",&n);

printf("Enter %d integers\n", n);

for (c = 0 ; c < n ; c++)

scanf("%d",&array[c]);
printf("Enter value to find\n");

scanf("%d",&search);

first = 0;

last = n - 1;

middle = (first+last)/2;

while(first <= last)

{

if (array[middle] < search)

first = middle + 1;

else if (array[middle] == search)

{

printf("%d found at location %d.\n", search, middle+1);
break;

}

else

last = middle - 1;

middle = (first + last)/2;

}

if (first > last)

printf("Not found! %d is not present in the list.\n",

search);

return 0;

}

C. Interpolation Search :

#include<stdio.h>

#include<conio.h>

void main()

{

int a[25],n,mid,low,high,f=0,item,i;

printf("Enter the size of the array");

scanf("%d",&n);

printf("Enter the elements in sorted order");

for(i=0;i<n;i++)
{

scanf("%d",&a[i]);

}

printf("Enter the item to be searched for");

scanf("%d",&item);

low=0;

high=n-1;

while(low<=high)

{

mid=(low+(high-low)*((item-a[low])/(a[high]-a[low])));

if(a[mid]==item)

{
printf("\n\nItem found at position %d",mid);

ISSN (Online) : 2278-1021

 ISSN (Print) : 2319-5940
 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 3, Issue 5, May 2014

Copyright to IJARCCE www.ijarcce.com 6630

f=1;

break;

}
else if(a[mid]>item)

{

high=mid-1;

}

else

{

low=mid+1;

}}

if(f==0)

printf("\n\nItem not found in the array");

getch();
}

VII. CONCLUSION

Searching is very important for huge application such as

database management system. In this work, we have tried

to summarize three searching algorithms and also included

searching concept, algorithm, coding & time complexity.

Coding part is implemented in C language. Rather we

have also discussed about the advantages of binary search

algorithm with respect to others for a given problem.

ACKNOWLEDGMENT
The authors would like to thank the authorities of Ghani

Khan Chowdhury Institute of Engineering & Technology,

Malda, West Bengal & Birbhum Institute of Engineering

& Technology, Suri, Birbhum-731101, West Bengal for

providing every kind of supports and encouragement

during the working process.

REFERENCES
[1] Ms.NidhiChhajed Assistant Professor C.S.E Dept. PIES, Mr. Imran

Uddin Assistant Professor, C.S.E Dept. PIES, Mr.Simarjeet Singh

Bhatia Assistant Professor, C.S.E Dept. PIES Indore (M.P), India.

A Comparison Based Analysis of Four Different Types of Sorting

Algorithms in Data Structures with Their Performances.

[2] Asagba P. O, Osaghae E. O. and Ogheneovo, E. E.Department of

Computer Science, University of Port Harcourt, Choba, Port

Harcourt, Rivers State. Is Binary search technique faster than

Linear search technique?

[3] Yehoshua Perl Bar-Ilan University and The Weizmann Institute of

Science,AlonItaiTechnion--Israel Institute of Technology,

HaimAvni The Weizmann Institute of Science. Interpolation Search

A Log LogNSearch.

[4] YAO, A. C., AND YAO, F. F. The complexity of searching an

ordered random table. InP~ocadmgs of the 17th .4 WILLC11

Symposium OH the Fowz&ztzotzs of Computer Science. 1EEE,

NewYork, 1976, pp. 173-175.

[5] PEARL, Y., ITAI, A., ANDAVNI, H. Interpolation search—A log

log N search. Commun. ACM 21, 7, (1978), 550–554

[6] PEARL. Y., AND REINGOLD, E. M. Understanding the

complexity of interpolation search. lnf.Proc. Left, 6.6 (1977), 219–

222

BIOGRAPHIES

Debadrita Roy, born in India, obtained her

M.Tech degree from Heritage Institute of

Technology, Kolkata, W.B. Now she is

Trainer of Information Technology

Department in Ghani Khan Chowdhury

Institute of Engineering & Technology,

Malda-732101, West Bengal, India. She is Life member of

International Association of Engineers India.

Arnab Kundu, born in India, obtained his

M.Tech degree from West Bengal

University of Technology, W.B. Now he is
Asst. Professor of E.C.E. Department in

Birbhum Institute of Engineering &

Technology, P.O.:Suri, Dist.:Birbhum,

PIN:731101 and also doing his research work from CSIR-

CMERI, Durgapur-713209, West Bengal, India. He is

member of IEEE & also Life member of Indian Society

for Technical Education, Indian Society of Remote

Sensing, International Association of Engineers, The

Institution of Electronics & Telecommunication Engineers

& Society for EMC Engineers (India).

